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a b s t r a c t

In this paper, target localization using bistatic multiple-input multiple-output radar where the
source number exceeds the sizes of the transmit and receive arrays, denoted by M and N,
respectively, is addressed. We consider the Swerling II target in which the radar cross section
varies in different pulses. Two algorithms for joint direction-of-departure (DOD) and direction-
of-arrival (DOA) estimation of the targets are devised. The first one is a subspace-based
estimator which is computationally simpler and can identify up to 2ðM�1Þ ð2N�1Þ sources,
assuming that NZM. The second is a maximum likelihood method with a higher estimation
accuracy, where the DODs and DOAs are solved via alternating optimization. Simulation
results are included to compare their mean square error performance with the Cramér–Rao
lower bound.

& 2014 Published by Elsevier B.V.
1. Introduction

The topic of source localization with the use of multiple-
input multiple-output (MIMO) radar has received consider-
able interest [1–3]. The orthogonal waveforms emitted by the
transmit antennas of the MIMO radar, when impinge
on moving targets, will be reflected to its receive antennas.
Unlike traditional phase array radar which uses coherent
waveforms, MIMO radar simultaneously transmits multiple
orthogonal signals and is able to offer superior performance.
by a grant from the
he Research Grants
oundation of China
4), and in part sup-
er Grant 61222106.

han),
g (L. Huang),
Basically, there are two categories of MIMO radars, where
statistical and colocated antennas are employed.

In the first class [2,4–6], the transmit antennas are widely
separated compared with their distances to targets. Hence, the
sources can be identified from different directions simulta-
neously, and spatial diversity gain of targets as well as high
target resolution are achieved. The second type can be further
classified as monostatic [7–10] and bistatic MIMO radars
[11,12], where both of the elements of transmit and receive
antennas are closely spaced compared to the target ranges.
Their main difference is that the transmitters and receivers are
close to each other in the first type of radar but they are
separated away from each other in the bistatic counterpart.
This leads to the consequence of same and distinct direction-
of-departure (DOD) and direction-of-arrival (DOA) for each
target in the former and latter, respectively. In this work, our
task is to find the DODs and DOAs for locating multiple targets
using the bistatic MIMO radar in the underdetermined
scenario of K4maxðM;NÞ where K, M and N represent the
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numbers of targets, transmit antennas and receive antennas,
respectively.

A number of underdetermined DOD and DOA estimation
algorithms have been developed for the MIMO data model
where the radar cross section (RCS) remains un-
changed in all the pulses, namely, the Swerling I target. In
the presence of white Gaussian noise, the optimum solution is
obtained by finding the peak of the maximum likelihood (ML)
cost function, and the corresponding 2K-dimensional (2K-D)
optimization problem can be broken down into 2K iterative 1-
D searches [12]. To avoid large computational burden due to
the highly nonlinear maximization, subspace methodology
which exploits the signal and noise subspaces via eigenvalue
decomposition of the sample covariance matrix or singular
value decomposition (SVD) of the raw data matrix is a popular
choice for suboptimal techniques. 2-D multiple signal classi-
fication (MUSIC) [13,14], which uses the noise subspace, has
been suggested using double polynomial root finding proce-
dure to estimate the DODs and DOAs. On the other hand,
estimation of signal parameters via rotational invariance
technique (ESPRIT) [11,15,16], which employs the signal sub-
space, is able to produce closed-form DOD and DOA estimates
with auto-pairing. In this work, we consider a fast changing
environment when the RCSs are different among the pulses.
That is, Swerling II target model is adopted [17,18]. The
transmit and receive antenna configurations are assumed to
be uniform linear array (ULA). Under this setting, the number
of identifiable targets is nearly four times that of the model
with identical RCSs. Two joint DOD and DOA estimation
algorithms where the first is a computationally efficient
ESPRIT-like algorithm and the second is a ML estimator with
high estimation accuracy, will be devised.

The rest of this paper is organized as follows. In Section
2, the data model and problem formulation are presented.
The ESPRIT method is developed and its identifiability is
analyzed in Section 3. In Section 4, the ML estimator is
derived and we propose to apply alternating optimization
to solve for the DODs and DOAs with the ESPRIT solution
being the initial estimate. In Section 5, the localization
performance of the two algorithms is evaluated by compar-
ing with the Cramér–Rao lower bound (CRLB). Finally,
conclusions are drawn in Section 6.

Throughout this paper, we use boldface uppercase letters
to denote matrices, boldface lowercase letters for column
vectors, and lowercase letters for scalar quantities. Super-
scripts ð�Þn, ð�ÞT , ð�ÞH , ð�Þ�1 and ð�Þ† represent complex con-
jugate, transpose, Hermitian transpose, matrix inverse, and
pseudo inverse, respectively. The gradient of f ðaÞ with respect
to a is denoted by ∇af . The Ra and Ia denote the real part
and complex part of a. Moreover, â denotes the estimate of a
and Efag is the expected value of a. The ½A�m;n represents the
(m,n) entry of A, while trðAÞ and jAj are the trace and
determinant of A, respectively. The block diagonal matrix,
with A1 and A2 being its components, is denoted by diag
ðA1;A2Þ, and vec(A) is the columnwise vectorized version of
A. The Kronecker product and Khatri-Rao matrix product are
denoted by � and ○, respectively. Furthermore, IM is the M �
M identity matrix, 1M is the M � 1 vector with all elements
equal one and 0M is the M � 1 zero vector. The x� CN ðμ;ΣÞ
means that x is complex Gaussian distributed with mean μ
and covariance matrix Σ.
2. Signal model and problem formulation

Consider a bistatic MIMO radar system with an M-
element transmit and an N-element receive ULAs for
locating K targets in the range bin of interest. The emitted
signal impinges on the targets and the pth reflected pulse
signal arrived at the receive antennas, after matched
filtering, can be expressed as

Xp ¼ FSpþQ p; p¼ 1;2;…; P ð1Þ

where

F¼H○GACMN�K ð2Þ

G¼ ½g1 g2 ⋯ gK �ACM�K ð3Þ

H¼ ½h1 h2 ⋯ hK �CN�K ð4Þ

gk ¼ 1 exp j
2πdt sin ð �θkÞ

λ

� �
⋯ exp j

2πdtðM�1Þ sin ð �θkÞ
λ

� �� �T
ð5Þ

hk ¼ 1 exp j
2πdr sin ð �ϕkÞ

λ

� �
⋯ exp j

2πdrðN�1Þ sin ð �ϕkÞ
λ

� �� �T
:

ð6Þ

The �θkAð�π=2; π=2Þ and �ϕkAð�π=2; π=2Þ denote the DOD
and DOA of the kth target to be estimated, respectively.
Furthermore, λ is the carrier wavelength while dt and dr
are the inter-element separations in the transmitter
and receiver, and they are known constants. A total of P
pulses in the interesting range bin are collected, and in
each pulse, there are L samples or snapshots. In this
work, we consider the underdetermined scenario of
maxðM;NÞoKrmin ðL; PÞ. The ½Sp�k;ℓ is RCS of the ℓth
snapshot within the pth pulse of the kth target. It is
assumed that the distribution of the RCS of the kth target
is the same for snapshots within pulses but different
among pulses, that is, ½Sp�k;ℓ �N ð0; α2k;pÞ, p¼ 1;2;…; P,

k¼ 1;2;…;K , ℓ¼ 1; 2;…; L. The ðk;ℓÞ entry of Q p is the
zero-mean white Gaussian noise of the kth target at the
ℓth snapshot in the pth pulse, which is independent
among snapshots, pulses and targets, and we can write
½vecðQ1ÞT vecðQ 2ÞT ⋯ vecðQ PÞT �T � CN ð0MNLP�1; s2IMNLPÞ.
The values of fα2k;pg and s2 are unknown. Note that (1)–

(6) correspond to the Swerling II [19] target model where
the RCS varies in different pulses. For the ease of presenta-
tion, we convert the DODs and DOAs to spatial frequencies
by letting θk ¼ 2πdt sin ð �θkÞ=λ and ϕk ¼ 2πdr sin ð �ϕkÞ=λ.
Since dt, dr and λ are known and �π=2o �θk; �ϕkoπ=2, we
can straightforwardly determine the DODs and DOAs once
θk and ϕk are estimated.

3. ESPRIT-like estimator

Let xp;ℓACMN be the ℓth column of Xp, that is,

Xp ¼ ½xp;1 xp;2 ⋯ xp;L�: ð7Þ
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The covariance matrix of the pth pulse, denoted by Rp,
p¼ 1;2;…; P, is easily shown to be

Rp ¼
1
L
EfXpXH

p g ¼
1
L

∑
L

ℓ ¼ 1
Efxp;ℓ xH

p;ℓg ¼ F diag αp
� �

FHþs2IMN

ð8Þ
where

αp ¼ ½α1;p α2;p ⋯ αK;p�T : ð9Þ

Our first step is to compute the ranks of several matrices
in order to determine the signal subspace of the ESPRIT
estimator. When noise is absent or s2 ¼ 0, vectorizing Rp

yields

vecðRpÞ ¼ ðFn○FÞαp; p¼ 1;2;…; P: ð10Þ
Stacking the P vectors in (10), we obtain

R9 ½vecðR1Þ vecðR2Þ ⋯ vecðRPÞ� ¼ ðFn○FÞAACðMNÞ2�P ð11Þ
where

A¼ ½α1 α2 ⋯ αP �: ð12Þ
As AARK�P is drawn randomly from a distribution where
KoP, it has full rank with probability one. As a result, the
rank of ðFn○FÞ A equals that of Fn○F. The rank of Fn○F is
now investigated.

Lemma 1. There exists a permutation matrix JAf0;
1gM2N2�M2N2

such that

Fn○F¼ JðHn○H○Gn○GÞ: ð13Þ

Proof of Lemma 1. There exists a permutation matrix
~JAf0;1gMN�MN such that Gn○H¼ ~JðH○GnÞ. We then have

Fn○F¼ ðHn○ð~JðH○GnÞÞ○GÞ ¼ JðHn○H○Gn○GÞ ð14Þ
where

J¼ IN � ~J � IM : ð15Þ

From Lemma 1, the rank of Fn○F equals that of Hn○H○
Gn○G. Therefore, we now investigate the ranks of Gn○G and
Hn○H.

Lemma 2.

Gn○G¼LGG ð16Þ
where

G¼

ejð1�MÞθ1 ejð1�MÞθ2 ⋯ ejð1�MÞθK

ejð2�MÞθ1 ejð2�MÞθ2 ⋯ ejð2�MÞθK

⋮ ⋮ ⋱ ⋮
ejðM�1Þθ1 ejðM�1Þθ2 ⋯ ejðM�1ÞθK

2
6664

3
7775ACð2M�1Þ�K

ð17Þ
and LGAf0;1gM2�ð2M�1Þ.

Proof of Lemma 2. The kth column of Gn○G is gn

k � gk,
which equals vecðgkgHk Þ. As gkgHk ACM�M is Hermitian
Toeplitz with first column and first row being gkACM

and gHk , respectively. Therefore, gn

k � gkACM2
has only

ð2M�1Þ distinct entries.
Corollary 1.

Hn○H¼LHH ð18Þ
where

H¼

ejð1�NÞϕ1 ejð1�NÞϕ2 ⋯ ejð1�NÞϕK

ejð2�NÞϕ1 ejð2�NÞϕ2 ⋯ ejð2�NÞϕK

⋮ ⋮ ⋱ ⋮
ejðN�1Þϕ1 ejðN�1Þϕ2 ⋯ ejðN�1ÞϕK

2
6664

3
7775ACð2N�1Þ�K

ð19Þ
and LHAf0;1gN2�ð2N�1Þ.

Based on Lemma 2 and Corollary 1, we have

Lemma 3. The rank of Hn○H○Gn○G equals that of H○G.
Proof of Lemma 3. By (16) and (18), we have

Hn○H○Gn○G¼LðH○GÞ ð20Þ
where

L¼LH � LG: ð21Þ
As LAf0;1gðM2N2Þ�ð2M�1Þð2N�1Þ has rank ð2M�1Þð2N�1Þ,
the rank of Hn○H○Gn○G equals that of H○G.
From (17) and (19), GACð2M�1Þ�K and HACð2N�1Þ�K are
Vandermonde matrices and the following theorem speci-
fies the rank of H○G, which is also the rank of Fn○F.

Theorem 1. If θk and ϕk are sampled from a distribution that
is continuous with respect to the Lebesgue measure in C2K ,
then the rank of H○G is minðð2M�1Þð2N�1Þ;KÞ almost
surely.

Proof of Theorem 1. See [20, p. 45].

In the presence of noise or s240, we employ (8), (11), (13)
and (20) to obtain

R¼ JLðH○GÞAþs2ıMN1
T
P ð22Þ

where

ıMN ¼ vecðIMNÞ ð23Þ
To remove the noise component, we post-multiply (22) by
the null space of 1T

P , denoted by ð1T
P Þ? . Together with pre-

multiplication of the pseudo inverse of JL, a modified
covariance matrix is constructed as

R9 ðJLÞ†Rð1T
P Þ? ¼ ðH○GÞAð1T

P Þ? ACð2M�1Þð2N�1Þ�ðP�1Þ:

ð24Þ
As P�1ZK , the matrix Að1T

P Þ? ACK�ðP�1Þ has rank K with
probability one. As a result, the rank of R equals that
of H○G. By Theorem 1, R has rank K because Kr
ð2M�1Þð2N�1Þ. According to SVD,R can be decomposed as

R¼Us diagðλ1; λ2…; λK ÞUH
s þUn diagðλKþ1; λKþ2…; λP�1ÞUH

n

ð25Þ
where

λ1Zλ2Z⋯ZλK4λKþ1 ¼⋯¼ λP�1 ¼ 0: ð26Þ
Here, UsACð2M�1Þð2N�1Þ�K and UnACð2M�1Þð2N�1Þ�ðMN�KÞ

represent the signal and noise subspaces, respectively, and
λ1; λ2;…; λP�1, are the corresponding singular values. It is
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clear that the kth column of ½Us Un� is the singular vector
corresponds to λk.

Nevertheless, we only have the sample covariance
matrices which are computed as R̂p ¼XpXH

p =L, p¼ 1;2;
…; P. That is to say, in practice, Us is computed from

R̂ ¼ ðJLÞ†R̂ð1T
P Þ? ð27Þ

where R̂ ¼ ½vecðR̂1Þ vecðR̂2Þ ⋯ vecðR̂PÞ� and now λ̂1Z λ̂2Z
λ̂K 4 λ̂Kþ1Z⋯Z λ̂P�140 where λ̂k denotes the singular
values of R̂.

After obtaining Us, we utilize the ESPRIT technique for
parameter estimation by constructing four submatrices,
namely, Z1AC2ðM�1Þð2N�1Þ�K , Z2AC2ðM�1Þð2N�1Þ�K , Z3A

C2ðN�1Þð2M�1Þ�K and Z4AC2ðN�1Þð2M�1Þ�K as follows. Let Ξ
be an index matrix

Ξ¼

1 2M ⋯ ð2M�1Þð2N�1Þ�2Mþ2
2 2Mþ1 ⋯ ð2M�1Þð2N�1Þ�2Mþ3
⋮ ⋮ ⋱ ⋮

2M�1 4M�2 ⋯ ð2M�1Þð2N�1Þ:

2
66664

3
77775
ð28Þ

Then, Z1 and Z2 are the same as Us except that the rows
indexed by the last row and first row of Ξ being removed,
respectively. Furthermore, Z3 and Z4 are the same as Us

except that the rows indexed by the last column and first
column of Ξ being removed, respectively. In doing so, two
equations are formed

Z1Ω�Z2 ð29Þ
and

Z3Γ�Z4 ð30Þ
where the phase angles of the eigenvalues of Ω and Γ are
θk and ϕk, k¼ 1;2;…;K , respectively. The least squares (LS)
estimates of Ω and Γ are easily determined as

Ω̂ ¼Z†
1Z2 ð31Þ

and

Γ̂ ¼Z†
3Z4 ð32Þ

For auto-pairing, the eigenvalues and eigenvectors of Ω̂ are

first calculated, that is, Ω̂ ¼ TCT�1 where the columns of T
are eigenvectors and C is the diagonal matrix of eigenva-

lues. Then, we compute T�1Γ̂T whose angle of the kth
diagonal element is the estimate of ϕk and automatically
paired up with that of θk. Alternatively, joint DOD and DOA
estimation can be achieved by constructing a matrix V of
the form

V¼ ~Ωþ j ~Γ ð33Þ
where

~Ω ¼ jðIK þΩ̂Þ�1ðIK �Ω̂Þ ð34Þ

~Γ ¼ jðIK þ Γ̂Þ�1ðIK� Γ̂Þ: ð35Þ

Then, θ̂k and ϕ̂k are obtained from the eigenvalues of V,
denoted by vk, k¼ 1;2;…;K , as

θ̂k ¼ 2 tan �1ðRðvkÞÞ ð36Þ
ϕ̂k ¼ 2 tan �1ðIðvkÞÞ: ð37Þ
From (36) and (37), the DODs and DOAs are automatically
paired up. Employing the angle estimates to construct the
approximate forms of G and H, denoted by Ĝ and Ĥ, we
can compute A and s2 as follows. Using (22) and vector-
ization, we have

vecðR̂Þ � IP � ðJLðĤ○ĜÞÞvecðAÞþs21T
P � ıMN

¼ ½IP � ðJLðĤ○ĜÞÞ 1T
P � ıMN �

vecðAÞ
s2

� �
: ð38Þ

The LS estimates of A and s2 are then

vecðÂÞ
ŝ

2" #
¼ ½IP � ðJLðĤ○ĜÞÞ 1T

P � ıMN�†vecðR̂Þ: ð39Þ

To guarantee unambiguous angle estimation, (29) and (30)
indicate that the column lengths of Z1, Z2, Z3 and Z4

should be equal to or larger than those of the correspond-
ing rows. Recall Z1, Z2AC2ðM�1Þð2N�1Þ�K and Z3, Z4A

C2ðN�1Þð2M�1Þ�K , the maximum number of targets that can
be identified is thus equal to 2ðM�1Þð2N�1Þ, assuming
that NZM. Since performing SVD on R̂ corresponds to the
major computational load, the complexity of the ESPRIT

algorithm is OðP3Þ. It is worth pointing out that apart
from ESPRIT, joint DOD and DOA estimation can also be
achieved by applying the MUSIC algorithm on R̂.

4. Maximum likelihood estimator

In the following, the ML estimates of θ and ϕ are
obtained using alternating optimization. First, let xℓ be
the vector collecting the ℓth snapshot of all pulses, that is,
xℓ ¼ ½xT

1;ℓ xT
2;ℓ ⋯ xT

P;ℓ�T . To derive the ML estimator, the first
step is to construct the probability density function (PDF)
of xℓ:

pðxℓÞ ¼ π�MNP jRj�1þexpf�xHℓR
�1xℓg ð40Þ

where

R¼ diagðR1;R2;…;RPÞ ð41Þ
Note that R is block diagonal as Sp and Q p are uncorrelated.
The joint PDF of x1; x2;…; xL, which are independent, is

pðx1; x2;…; xLÞ ¼ ∏
L

ℓ ¼ 1
pðxℓÞ: ð42Þ

Taking logarithm on both sides yields

logðpðx1; x2;…; xLÞÞ ¼ �LðMNP logðπÞþ logðjRjÞÞ

� ∑
L

ℓ ¼ 1
xHℓR

�1xℓ: ð43Þ

Let θ¼ ½θ1 θ2 ⋯ θK �T and ϕ¼ ½ϕ1 ϕ2 ⋯ ϕK �T . Dividing both
sides by L and removing the constant term yields

� f θ;ϕ;A; s2
� �¼ logðjRjÞþ1

L
∑
L

ℓ ¼ 1
tr R�1xℓ xHℓ
� 	

¼ ∑
P

p ¼ 1
logðjRpjÞþ

1
L

∑
L

ℓ ¼ 1
∑
P

p ¼ 1
tr R�1

p xp;ℓ xH
p;ℓ

� 	

¼ ∑
P

p ¼ 1
ðlogðjRpjÞþtrðR�1

p R̂pÞÞ ð44Þ
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where

R̂p ¼
1
L

∑
L

ℓ ¼ 1
xp;ℓ xH

p;ℓ: ð45Þ

In the following, f ðθ;ϕ;A; s2Þ is replaced by f for brevity.
Maximizing the ML cost function in (42) is equivalent
to minimizing f. To avoid the extremely demanding
ð2KþKPþ1Þ-D search, we propose to utilize alternating
optimization as follows. First, we construct F with the use
of estimates of θ and ϕ to find A and s2. Then, the estimates
of A and s2 are treated as known parameters to update θ̂ and
ϕ̂. Iterations between these two sets of parameters are
performed until a stopping criterion is reached. That is, our
alternating optimization algorithm can be conceptually sum-
marized as

fÂ ðnþ1Þ
; ŝ2 ðnþ1Þg ¼ arg min

A;s2
f ðθ̂ðnÞ; ϕ̂ðnÞ

;A; s2Þ ð46Þ

fθ̂ðnþ1Þ
; ϕ̂

ðnþ1Þg ¼ arg min
θ;ϕ

f ðθ;ϕ; Â ðnþ1Þ
; ŝ2 ðnþ1ÞÞ ð47Þ

where âðnÞ is the estimate of a at the nth iteration. Let
ζ ¼ ½θT ϕT vecðAÞT s2�T . The gradient of f with respect to the
ith element of ζ is

∇ζ i f ¼ ∑
P

p ¼ 1
trðð∇ζ iRpÞR�1

p ðRp� R̂pÞR�1
p Þ: ð48Þ

The ML estimate is obtained by finding the roots of ∇ζ i f ¼ 0.
When ζ i ¼ αp ¼ ½α1;p α2;p ⋯ αK;p�T , (48) becomes

ðF○FnÞT ðR�T
p � R�1

p ÞððFn○FÞαpþs2iMN� r̂pÞ ð49Þ

where

r̂p ¼ vecðR̂pÞ: ð50Þ
Equating (49) to zero yields

ϒpαpþκps2 ¼ τp ð51Þ
where

ϒp ¼ ðFn○FÞHðR�T
p � R�1

p ÞðFn○FÞ ð52Þ

κp ¼ ðFn○FÞHðR�T
p � R�1

p ÞıMN ð53Þ

τp ¼ ðFn○FÞHðR�T
p � R�1

p Þr̂p: ð54Þ

Grouping (51) for p¼ 1;2;…; P, we obtain

ϒα¼ τ ð55Þ
where

ϒ¼ ½ �ϒ κ� ð56Þ

α¼ ½αT
1 αT

2 ⋯ αT
P s2�T ð57Þ

τ ¼ ½τT1 τT2 ⋯ τTP �T ð58Þ

�ϒ ¼ diagðϒ1;ϒ2;⋯;ϒPÞ ð59Þ

κ¼ ½κT1 κT2 ⋯ κTP �T : ð60Þ
The LS solution of (55) is then

α¼ϒ�1τ: ð61Þ
That is, (46) is realized by (61), and we use the ESPRIT
estimates of θ, ϕ and α to construct ϒ and τ as the first step
of the ML estimator. On the other hand, (47) is implemented
via K 2-D searches

fθ̂ ðnþ1Þ
k ; ϕ̂

ðnþ1Þ
k g ¼ arg min

θk ;ϕk

f ðθk;ϕk; θ̂
ðnþ1Þ
k� ; θ̂

ðnÞ
kþ ; ϕ̂

ðnþ1Þ
k� ; ϕ̂

ðnÞ
kþ ;

Â
ðnÞ
; ŝ2 ðnÞÞ ð62Þ

where θ̂
ðnþ1Þ
k� denotes ½θ̂1 θ̂2 ⋯ θ̂k�1�T at the ðnþ1Þ th

iteration and θ̂
ðnÞ
kþ represents ½θ̂kþ1 θ̂kþ2 ⋯ θ̂K �T at the nth

iteration, while ϕ̂
ðnþ1Þ
k� are ϕ̂

ðnÞ
kþ are defined similarly.

5. Simulation results

Computer simulations are conducted to evaluate the
performance of the ESPRIT and ML methods for joint DOD
and DOA estimation in bistatic MIMO radar. Newton's
method is applied for solving (62) in the ML estimator,
and five iterations are employed as the stopping criterion
because no significant improvement is observed for more
iterations. The mean square error (MSE) is assigned as the
performance measure:

MSE θð Þ ¼ 1
KR

∑
R

r ¼ 1
‖θ� θ̂r‖2 ð63Þ

MSE ϕð Þ ¼ 1
KR

∑
R

r ¼ 1
‖ϕ�ϕ̂r‖2: ð64Þ

where R¼100 is the number of independent runs, while θ̂r
and ϕ̂r are the estimates of θ and ϕ in the rth trial.
Furthermore, the minimum achievable variance bench-
mark of CRLB (see Appendix) is included for assessing the
algorithm optimality. We properly scale the noise matrices
fQ pg whose entries are circular complex-valued zero-mean
white Gaussian variables to produce different signal-to-noise
ratio (SNR) conditions. The SNR is defined as

∑MN
m ¼ 1∑

L
ℓ ¼ 1∑

P
p ¼ 1‖F

HΛpF‖2

s2MNLP
:

We fix M¼2, N¼3, K¼6, dt ¼ dr ¼ 0:25, θ¼ ½�70 �35
�18 15 30 41�○ and ϕ¼ ½�60 �42 �21 5 23 43�○ and
the MSE performance under different values of L and P is
studied. Note that L represents the number of samples in
each pulse. That is, the pulse width is proportional to L and
the sampling intervals for different values of L are identical
and thus there is no change in bandwidth. Moreover, a larger
value of L or P means more temporal information.

In the first test, we set L¼128 and P¼50. The results of
MSE ðθÞ and MSE ðϕÞ are shown in Figs. 1 and 2, respec-
tively. It is seen that the ESPRIT algorithm provides an
suboptimal performance and its MSEs are above the CRLB
by more than 5 dB. On the other hand, the MSE of the ML
estimator is able to attain the CRLB when SNR Z4:5 dB.
This also implies that the ESPRIT performance cannot
attain the CRLB since its equivalent aperture has been
reduced but it is suitable for initializing the ML scheme. In
the second test, the parameters are changed to L¼256
and P¼50. The results shown in Figs. 3 and 4 are similar to
those in Figs. 1 and 2 except that the threshold SNRs of
MSE ðθÞ and MSE ðϕÞ of the ESPRIT and ML algorithms
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Fig. 1. MSE versus SNR of θ with L¼128 and P¼50.
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Fig. 2. MSE versus SNR of ϕ with L¼128 and P¼50.
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Fig. 3. MSE versus SNR of θ with L¼256 and P¼50.
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Fig. 4. MSE versus SNR of ϕ with L¼256 and P¼50.
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Fig. 5. MSE versus SNR of θ with L¼512 and P¼25.
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Fig. 6. MSE versus SNR of ϕ with L¼512 and P¼25.
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change to �2.5 dB and 2.5 dB, respectively. Finally, the
scenario of L¼512 and P¼25 is investigated. From Figs. 5
and 6, MSE ðθÞ and MSE ðϕÞ of the ESPRIT algorithm are
about 7 dB larger than the CRLB. On the other hand, the ML
algorithm can attain optimal performance when the SNR is
larger than 5 dB. It is worth noting that when the initial
estimates are not sufficiently close to the global solution,
local convergence and thus large estimation error will
be resulted in the ML method. Hence it has the same
threshold performance as that of the ESPRIT method.
Nevertheless, it is expected that the former will give
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a lower threshold SNR if there is a more accurate initial
guess.

6. Conclusion

Two joint DOD and DOA estimation algorithms for
bistatic MIMO radar in the presence of white Gaussian
noise have been developed. We consider a fast changing
environment such that the RCSs vary among pulses. The
first is a computationally efficient ESPRIT-like algorithm
with suboptimal estimation performance. While the sec-
ond is the ML estimator which is realized by alternating
optimization, and its MSE can attain the CRLB at the
expense of higher computational complexity.

Appendix A

The CRLB is derived as follows. The observation vector
is xℓ ¼ ½xT

1;ℓ xT
2;ℓ ⋯ xT

P;ℓ�T , which is normally distributed
with mean 0MNP�1 and covariance R in (41). The (m,n) entry
of the stochastic Fisher information matrix (FIM) is [21]

½FIM�m;n ¼ Ltrðð∇½η�mRÞR�1ð∇½η�nRÞR�1Þ ðA:1Þ
where

η¼ ½θT ϕT vecðAÞT s2�T : ðA:2Þ
As R¼ diagðR1;R2;…;RPÞ is block-diagonal, (A.1) can be
written as

½FIM�m;n ¼ L ∑
P

p ¼ 1
trðð∇½η�mRpÞR�1

p ð∇½η�nRpÞR�1
p Þ

¼ L ∑
P

p ¼ 1
vecHð∇½η�mRpÞðR�T

p � R�1
p Þvecð∇½η�nRpÞ

ðA:3Þ
where the identity trðABCDÞ ¼ vecHðAHÞðDT � BÞvecðCÞ has
been used. Eq. (A.3) can be written more compactly as

FIM¼ L ∑
P

p ¼ 1
DH

p ðR�T
p � R�1

p ÞDp ðA:4Þ

where

Dp ¼∇ηTvecðRpÞ: ðA:5Þ
Let fk ¼ hk○gk. Then the required terms are calculated as

∇θkvecðRpÞ ¼ ðð∇θk f
n

kÞ○fkþfnk○ð∇θk fkÞÞαk;p ðA:6Þ

∇ϕk
vecðRpÞ ¼ ðð∇ϕk

fnkÞ○fkþfnk○ð∇ϕk
fkÞÞαk;p ðA:7Þ

∇αk;pvecðRpÞ ¼ fnk○fk ðA:8Þ

∇s2 vecðRpÞ ¼ ıMN ðA:9Þ

∇θk fk ¼ hk
○ð∇θkgkÞ ðA:10Þ
∇ϕk
fk ¼ ð∇ϕk

hkÞ○gk ðA:11Þ

∇θkgk ¼ ½0 ejθk 2jej2θk ⋯ jðM�1ÞejðM�1Þθk �T ðA:12Þ

∇ϕk
hk ¼ ½0 ejϕk 2jej2ϕk ⋯ jðN�1ÞejðN�1Þϕk �T : ðA:13Þ

The CRLB is the inverse of the FIM. Its diagonal elements are
the variances of the parameters in η.
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